Saturday, August 9, 2008

SEJARAH KOMPUTER

Generasi Pertama
Dengan terjadinya Perang Dunia Kedua, negara-negara yang terlibat dalam perang tersebut berusaha mengembangkan komputer untuk mengeksploit potensi strategis yang dimiliki komputer. Hal ini meningkatkan pendanaan pengembangan komputer serta mempercepat kemajuan teknik komputer. Pada tahun 1941, Konrad Zuse, seorang insinyur Jerman membangun sebuah komputer, Z3, untuk mendesain pesawat terbang dan peluru kendali.
Pihak sekutu juga membuat kemajuan lain dalam pengembangan kekuatan komputer. Tahun 1943, pihak Inggris menyelesaikan komputer pemecah kode rahasia yang dinamakan Colossus untuk memecahkan kode-rahasia yang digunakan Jerman. Dampak pembuatan Colossus tidak terlalu mempengaruhi perkembangan industri komputer dikarenakan dua alasan. Pertama, colossus bukan merupakan komputer serbaguna (general-purpose computer), ia hanya didesain untuk memecahkan kode rahasia. Kedua, keberadaan mesin ini dijaga kerahasiaannya hingga satu dekade setelah perang berakhir.
Usaha yang dilakukan oleh pihak Amerika pada saat itu menghasilkan suatu kemajuan lain. Howard H. Aiken (1900-1973), seorang insinyur Harvard yang bekerja dengan IBM, berhasil memproduksi kalkulator elektronik untuk US Navy. Kalkulator tersebut berukuran panjang setengah lapangan bola kaki dan memiliki rentang kabel sepanjang 500 mil. The Harvd-IBM Automatic Sequence Controlled Calculator, atau Mark I, merupakan komputer relai elektronik. Ia menggunakan sinyal elektromagnetik untuk menggerakkan komponen mekanik. Mesin tersebut beropreasi dengan lambat (ia membutuhkan 3-5 detik untuk setiap perhitungan) dan tidak fleksibel (urutan kalkulasi tidak dapat diubah). Kalkulator tersebut dapat melakukan perhitungan aritmatik dasar dan persamaan yang lebih kompleks.
Perkembangan komputer lain pada masa kini adalah Electronic Numerical Integrator and Computer (ENIAC), yang dibuat oleh kerjasama antara pemerintah Amerika Serikat dan University of Pennsylvania . Terdiri dari 18.000 tabung vakum, 70.000 resistor, dan 5 juta titik solder, komputer tersebut merupakan mesin yang sangat besar yang mengkonsumsi daya sebesar 160kW.
Komputer ini dirancang oleh John Presper Eckert (1919-1995) dn John W. Mauchly (1907-1980), ENIAC merupakan komputer serbaguna (general purpose computer) yang bekerja 1000 kali lebih cepat dibandingkan Mark I.
Pada pertengahan 1940-an, John von Neumann (1903-1957) bergabung dengan tim University of Pennsylvania dalam usha membangun konsep desin komputer yang hingga 40 tahun mendatang masih dipakai dalam teknik komputer. Von Neumann mendesain Electronic Discrete Variable Automatic Computer(EDVAC) pada tahun 1945 dengan sebuh memori untuk menampung baik program ataupun data. Teknik ini memungkinkan komputer untuk berhenti pada suatu saat dan kemudian melanjutkan pekerjaannya kembali. Kunci utama arsitektur von Neumann adalah unit pemrosesan sentral (CPU), yang memungkinkan seluruh fungsi komputer untuk dikoordinasikan melalui satu sumber tunggal. Tahun 1951, UNIVAC I (Universal Automatic Computer I) yang dibuat oleh Remington Rand, menjadi komputer komersial pertama yang memanfaatkan model arsitektur von Neumann tersebut.
Baik Badan Sensus Amerika Serikat dan General Electric memiliki UNIVAC. Salah satu hasil mengesankan yang dicapai oleh UNIVAC dalah keberhasilannya dalam memprediksi kemenangan Dwilight D. Eisenhower dalam pemilihan presiden tahun 1952.
Komputer Generasi pertama dikarakteristik dengan fakta bahwa instruksi operasi dibuat secara spesifik untuk suatu tugas tertentu. Setiap komputer memiliki program kode-biner yang berbeda yang disebut “bahasa mesin” (machine language). Hal ini menyebabkan komputer sulit untuk diprogram dan membatasi kecepatannya. Ciri lain komputer generasi pertama adalah penggunaan tube vakum (yang membuat komputer pada masa tersebut berukuran sangat besar) dn silinder magnetik untuk penyimpanan data.
From: © Muhammad Iyas Ilias

MONITOR, LAYAR PENAMPIL SISTEM

Meskipun dari tahun ke tahun fungsi monitor tetap sama, akan tetapi dalam perkembangannya, monitor tidak lagi semata-mata berfungsi sebagai peranti output video, melainkan sudah menjadi semacam jendela virtual kita untuk melihat dunia, lewat aktivitas kompleks yang dihasilkan oleh PC kita.
Saat ini, terdapat dua tipe monitor yang paling banyak disandingkan dengan system CPU dan paling banyak populasinya, yakni monitor tabung atau sering disebut monitor CRT (cathode ray tube) dan monitor LCD (liquid crystal display).
Bila diurai per komponen, sebuah monitor utuh akan terdiri dari bagian-bagian: (1) cangkang penutup, (2) tabung katoda (CRT), (3) drive board video CRT, (4) drive board raster, dan (5) power supply.

# Cangkang Penutup :
Cangkang penutup monitor terdiri atas dua bagian, yakni penutup bagian depan yang dikaitkan ke tabung katoda dan penutup belakang yang menutupi hamper sebagian besar monitor. Cangkang bagian depan, selain dikaitkan ke tabung juga dihubungkan ke degauss coil, suatu koil atau kumparan untuk menghilangkan gangguan warna-warna yang timbul pada layar monitor. Sedangkan cangkang bagian belakang dimaksudkan untuk melindungi bagian belakang tabung katoa (tempat pistol electron berada) dan membuat monitor nyaman untuk dilihat. Cangkang bagian belakang ini biasanya dikunci dengan baut empat buah di masing-masing sudut kanan kiri atas bawah.

# Tabung Katoda :
Monitor tabung berwarna yang sekarang ini kita kenal, sebenarnya secara teknis hampir mirip dengan monitor monokrom yang hidup pada generasi sebelumnya. Monitor berwarna menggunakan sirkuti video untuk memproses sinyal warna, yang diletakkan pada konstruksi CRT itu sendiri. Prinsip dasarnya, sebuah pistol electron (electron guns) yang ada di belakang monitor ditembakkan ke depan menuju layer yang permukaannya dilapisi dengan fosfor bermuatan positif. Fosfor bilamana dikenai energi akan berpendar dan memancarkan cahaya. Waktu berpendarnya fosfor ini dinamakan persistence. Supaya dia terus berpendar, fosfor harus terus-menerus ditembaki electron alias diberi energi, sehingga fosfor mengalami penyegaran (refresh) terus-menerus. Ukuran penyegaran setiap waktu tertentu, sehingga gambar di layer bias dimunculkan setiap detiknya disebut refresh rate, refresh rate makin bagus kualitas monitor tersebut. Tabung katoda menggunakan tiga buah katoda dan grid pengontrol video, yang masing-masing mengontrol tiga warna utama (merah, hijau, biru) guna menghasilkan kombinasi warna-warni ketika dia muncul di depan layer monitor.

# Drive Board video CRT :
Drive board video CRT atau sering disebut board video berfungsi untuk mengendalikan control-kontrol pada monitor, layer tabung, dan voltase. Board ini juga memiliki amplifier video untuk warna merah, hijau, dan biru dan driver untuk mengarahkan sinar electron. Sirkuit pada drive board CRT ini harus mengubah sinyal video bertegangan rendah (biasanya tak lebih dari 0.7 volt) menjadi sinyal video bertegangan tinggi (sekitar 50 volt) untuk ditembakkan ke layer.

# Drive Board Raster :
Raster adalah baris-baris pemindaian dalam area empat persegi panjang di mana sinar electron ditembakkan sehingga menghasilkan gambar visual. Drive board raster sendiri terdiri atas raster vertical, raster horizontal, dan sirkuit voltase tinggi yang mengendalikan tabung dan mengontrol pergerakan sinar electron ke seluruh layer. Pada beberapa monitor, board ini juga digunakan untuk meletakkan sirkuit daya (power supply) untuk mengatur setting monitor di layer. Raster vertical merupakan sebuah sirkuit yang digunakan untuk mengoperasikan arah pancaran electron secara vertical. Sementara raster horizontal untuk yang arah horizontal. Sirkuit-sirkuit ini dilengkapi dengan sebuah oscillator yang berfungsi untuk menyapu area layer secara vertical dan horizontal. Sapuan dari oscillator inilah yang menentukan refresh rate dari monitor tersebut.

# Power Supply :
Power supply dalam monitor berfungsi untuk mengubah listrik AC menjadi DC yang dibutuhkan untuk menggerakkan sirkuit-sirkuit di dalam monitor. Bila monitor Anda tidak memiliki board power supply sendiri, bisa jadi si produsennya sudah menyatukan komponen power supply ini ke dalam board raster.

Control dan Istilah pada Monitor

Horizontal size :
Sering disebut juga H-Size. Control ini berfungsi untuk menggerakkan atau menguruskan tampilan pada monitor. Bila Anda mengatur resolusi terlalu besar (1600 x 1200) misalnya, maka tampilan di layer otomatis akan menyempit. Untuk itu, Anda perlu mengatur ulang dengan "menggemukkan" tampilan. Demikian pul sebaliknya.

Horizontal phase :
Disingkat H-phase. Control ini berfungsi untuk menggeser tampilan kearah kanan atau kiri, bila tampilan gambar pada monitor kelihatan terlalu ke kiri atau ke kanan.

Vertical Size :
Disebut juga V-Size. Control ini berfungsi untuk membuat gambar terlalu tinggi atau terlalu cebol. Bila gambar terlalu tinggi, bagian atas dan bagian bawah dipastikan bakal ngumpet. Untuk mengaturnya, kita bisa menaikturunkan gambar sehingga posisiny pas.

Vertical phase :
Disebut juga V-phase. Berguna untuk menaikturunkan tampilan yang terlalu ke atas atau ke bawah.

Pincushion Adustment :
Disingkat PCC amp dan digunakan untuk mengatur kelurusan batas garis tepi kanan dan kiri gambar supaya tetap lurus. Bila setting PCC amp ini terlalu rendah, gambar akan terseret kearah luar sedangkan bila terlalu tinggi, gambar akan tampak melengkung ke dalam.

Trapezoidal Adjustment :
Sering disebut PCC phase. Control ini digunakan untuk membuat gambar tetap berbentuk persegi panjang sempurna, mengikuti bentuk monitor yang persegi. Bila setting terlampau rendah, gambar pada bagian atas akan tampak lebih kecil dibandingkan bagian bawah. Sebaliknya, bila terlalu tinggi gambar akan tampak melebar pada bagian atasnya.

Curvature Adjustment :
Sering disebut pula Pin balance. Control ini juga berfungsi untuk memperjelas tampilan gambar. Bila setting dibuat terlalu tinggi, gambar akan tampak melengkung ke kiri, dan bila terlampau rendah, gambar akan melengkung ke kanan. Control ini berbeda dengan control PCC amp, karena dengan control ini, gambar pada sisi kiri dan kanan akan bergerak pada arah yang sama bila dilakukan perubahan. Sementara pada PCC amp, sisi kanan dan kiri gambar justru akan bergerak saling mendekat atau menjauh bila setting diubah-ubah.

Key balance :
Sering disebut juga Tilt adjustment. Control ini akan menggerakkan gambar bagian atas tertarik ke arah kanan dan bagian bawah ke arah kiri bila disebut terlalu tinggi, sebaliknya bila diatur terlalu rendah.

Rotation :
Dinamakan juga twist adjustment. Control ini mengatur perputaran seluruh gambar pada seluruh tampilan. Jadi, sebuah gambar akan tampak berputar-putar bilamana control ini diubah-ubah. Posisi sempurna dicapai ketika sebuah tampilan gambar berada pada posisi vertical dan horizontal yang sesuai.

Horizontal Static :
Control ini berfungsi untuk mengatur pewarnaan tampilan gambar. Control ini akan mengatur keluaran sinar berwarna merah, hijau, dan biru yang muncul di layer.

Color purity :
Seringkali disebut sebagai color balance. Control ini berguna untuk mengatur intensitas warna merah, hijau, dan biru dalam komposisi yang seimbang sehingga menghasilkan warna yang benar-benar sesuai dengan aslinya. Control ini juga berkurang akurat seiring dengan makin tuanya pistol electron, sehingga bila terjadi hal demikian, kita bisa mengatur ulang setting RGB untuk menghasilkan warna yang jernih sesuai aslinya.

Moiré Level :
Moiré merupakan suatu gangguan atau distorsi yang terjadi pada monitor pada kondisi tertentu di mana resolusi, dot pitch, ukuran layer, dan pewarnaan gambar bertemu pada satu titik tertentu. Bentuk gangguan yang muncul pada layer biasanya berupa garis-garis bergelombang atau lingkaran-lingkaran elips berwarna putih pada monitor.
Pada beberapa monitor berukuran besar dan berkualitas tinggi, terdapat pengendalian-pengendalian yang lebih banyak. Kontrol ini berfungsi untuk memberikan suatu tampilan gambar yang lebih presisi dan koreksi yang lebih detail terhadap gangguan yang muncul, terutama pada bagian sudut-sudut monitor yang memang seringkali susah untuk mendapatkan hasil pengaturan optimalnya.

Vertical linearity :
Control ini sering juga disebut atau disingkat V-lin. Ia berfungsi untuk mengoreksi tampilan secara geometris.

Vertical linearity balance:
Disebut juga V-lin balance. Control ini mengatur pusat linearitas dari tampilan gambar pada sumbu vertical.

Center PCC :
Disebut juga center pinchusion. Control ini berfungsi untuk menghasilkan pengaturan presisi sehingga kita bisa mengatur pincushion supaya tampilan gambar terfokus pada bagian tengah monitor.

Corner PCC :
Seringkali disebut juga corner pincushion dan berfungsi untuk mengatur lengkungan pada sisi kiri dan kanan tampilan gambar supaya focus gambar pada sisi kiri dan kanan bisa tetap focus.
Center balance dan corner balance :
Berfungsi miring dengan pin balance.

Troubleshooting Monitor

Monitor merupakan komponen yang jarang rusak sebelum waktunya. Meski demikian, ada kalanya kita tetap menghadapi masalah dengan barang satu ini. Kerusakan monitor bisa disebabkan oleh banyak hal, tetapi reparasi monitor disarankan hanya dilakukan oleh orang yang benar-benar ahli. Saat ini sebenarnya dimaksudkan untuk menghindari orang supaya tidak mengutak-atik pistol electron, yang merupakan komponen bertegangan sangat tinggi.
Dengan demikian, masih tetap terbuka kemungkinan kita untuk memeriksa bagian dalm monitor bila ia rusak, asalkan tidak kita mengutak-atik pistol elektronnya, yang kalau salah urus bisa menyalak lantaran berisi peluru berupa listrik bertegangan sangat tinggi. Sebelum melakukan troubleshooting, kita harus paham bagaimana cara kerja monitor. Secara ringkas, caranya dapat digambarnya sebagai berikut.
Untuk menghasilkan gambar pertama-tama harus ada pancaran sinar electron yang dipicu melalui pistol electron, kemudian ditembakkan kea rah layer yang dilapisi fosfor. Ketika sinar electron menghantam fosfor, muncullah pendaran warna yang dapat kita lihat di layer monitor. Warna sinar ditentukan oleh susunan kimiawi dari fosfor tersebut. Terdapat tiga pistol electron di dalam tabung yakni pistol untuk menghasilkan sinar merah, hijau atau biru. Sinar electron dipicu oleh sebuah kabel yang disebut heater. Ketika diberi energi, heater ini menjadi panas dan memunculkan pancaran electron. Electron adalah listrik bermuatan negative. Lantaran bermuatan negative, ia akan mencari sesuatu yang bermuatan positif. Anoda (elektroda positif) dengan tegangan di atas 500 volt akan mulai menarik electron yang dilewatkan pada sebuah celah. Sekali electron melewati screen grid, anoda pada CRT akan mencari electron kea rah layer tabung, dengan potensial tegangan antara 15 sampai 30 ribu volt. Sinar ini masih belum terfokus, sehingga sebuah focus grid diperlukan untuk mengonsentrasikan sinar.
Elemen lain yang penting untuk diketahui adalah shadow mask. Alat ini merupakan lembaran logam dengan sejumlah lubang kecil-kecil di dalamnya. Beberapa tipe monitor menggunakan tirai ini untuk menghasilkan apa yang disebut aperture grille. Sinar yang melewati lubang inilah yang akan melewatkan sinar electron menghantam elemen fosfor yang melewatinya, menyatukan tiga warna sinar ini ke dalam elemen visual menjadi beragam warna. Mekanisme ini yang membedakan monitor berwarna dengan monokrom.

1. Gambar tidak muncul!
Masalah : Tidak ada sinyal gambar yang dimunculkan ke monitor.
Solusi : Periksa sinyal video yang terdapat pada board video adapter CRT, karena komponen ini kemungkinan rusak atau terbakar.

2. Kabel heater pada CRT terbuka!
Masalah : Setiap kali CRT dinyalakan, heater akan bekerja. Ketia CRT dimatikan, heater juga ikutan jadi frigid alias dingin. Perubahan panas yang berulang-ulang dan dalam waktu lama akan membuat heater menjadi terbuka dan panas merembes keluar dari kabel ini.
Solusi : Karena kabel heater ini terdiri dari tiga macam (merah, hijau, biru), kita dapat melihat kerusakannya pada warna yang muncul. Akan tetapi, kabel ini tidak dapat diganti kecuali Anda mengganti tabung katodanya sama sekali bila kabel ini rusak, praktis Anda harus mengganti monitor Anda dengan yang baru.

3. Katoda terhubung dengan control grid!
Masalah : Katoda adalah bahan yang terbuat dari logam tidak tahan korosi, sehingga memungkinkannya terhubung dengan control grid. Apabila hal ini terjadi, control grid akan kehilangan efektivitasnya, dan akan berakibat warna yang muncul menjadi soal alias pudar. Pada umumnya, gejala ini seringkali muncul.
Solusi : Bila sudah terjadi kontak, tidak ada yang mungkin bisa dilakukan. Yang paling baik adalah mencegah terjadinya kontak antara katoda dan control grid, dengan memberikan pembatas antara control grid dengan seluruh katoda.

4. Satu atau lebih warna tampak lemah!
Masalah : Ini pada umumnya terjadi karena pada katoda terbentuk lapisan ionic yang menghambat pelepasan electron menuju layer. Gejala semacam ini membuat katoda menjadi kurang efektif dalam menembakkan electron, yang mengakibatkan lemahnya warna pada layer monitor. Gejala ini akan terlihat di mana salah satu warna yang dihasilkan di layer monitor tampak lebih lemah.
Solusi : Periksa drive board video CRT Anda, apakah ikatan solder pada salah satu tabungnya kendor atau lepas. Solder ikatannya. Bila gambar sudah terlampau buram, satu-satunya kemungkinan adalah mengganti tabungnya. Namun, biasanya kerusakan semacam ini hanya terjadi setelah penggunaan dalam waktu lama.

5. Fosfor pada tabung katoda tampak kusam!
Masalah : Fosfor merupakan senyawa kimia yang akan memunculkan warna tertentu ketika terkena sinar electron berenergi tinggi. Pada monitor lama, kita seringkali menjumpai gambar yang tampak kuyu, dengan kontras warna yang tidak bisa diatur maksimal.
Solusi : Tidak ada cara lain kecuali mengganti tabung katoda. Tetapi, umur pakai fosfor bisa dihemat dengan mengatur brightness pada tingkat minimum dan Anda bisa memasang screen saver pada layer monitor untuk mengurangi pendaran fosfor yang terlampau lama.

6. Control grid pada CRT terbuka!
Masalah : Control grid digunakan untuk membatasi intensitas sinar yang dihasilkan oleh katoda, dengan memasang suatu muatan potensial pada grid. Bila control grid terbuka, akibatnya tidak ada lagi muatan potensial pada grid untuk mengontrol intensitas sinar, dan sinar akan memancar pada intensitas penuh.
Solusi : Periksa apakah katode dengan control grid atau heater dengan katoda terjadi hubungan pendek (short) atau tidak. Bila Anda tidak menemukan hubungan pendek (diperiksa dengan menggunakan multimeter, control grid kemungkinan telah terbuka. Solusi satu-satunya, tabung harus diganti.

7. Focus grid pada CRT terbuka!
Masalah : Oksidasi dapat membuat hubungan pendek antara katoda dengan control grid atau control grid dengan screen grid. Screen grid berfungsi untuk mengarahkan gerakan electron menuju layer. Bila screen grid mengalami hubungan pendek, energi electron yang memancar ke layer akn berkurang, sehingga akan mengurangi intensitas sinar yang berpendar pada fosfor, dan dengan demikian akan mengurangi kecerahan gambar secara keseluruhan. Pada beberapa kasus yang parah, gambar justru tidak muncul sama sekali.
Solusi : Anda dapat mengukur, apakah terjadi hubungan pendek pada screen grid atau tidak, dengan menggunakan multimeter guna mengukur voltase pada grid tersebut. Biasanya, grid memiliki voltase antara 250 sampai 750 volt pada situasi normal. Bila voltase terlampau rendah, matikan monitor,lalu lepas drive board video yang ada di leher tabung, kemudian restart monitor, dan ukur kembali voltasenya. Bila voltase screen gird kembali normal, bisa dipastikan bahwa screen gird mengalami hubungan pendek. Bila voltaswe tetap rendah, kita boleh curiga bahwa terjadi kerusakan pada sirkuit yang mengatur voltase pada screen.

8. Gambar tampak berwarna merah atau biru kehijauan (mendekati cyan)
Masalah : Terdapat problem pada sirkuit video untuk jalur merah.
Solusi : Pastikan sebelumnya bahwa control seting monitor berada pada kondisi normal. Bila control warna diset pada kondisi baik sementara warna kemerahan tidak juga hilang, periksalah sirkuit drive video yang tersambung dengan warna merah. Kita memerlukan osiloskop untuk melacak sinyal video input dan sinyal video output. Bila tidak terdapat sinyal video merah pada amplifier input, periksa sambungan antara monitor dengan board video adapter. Bila koneksi baik, cobalah gunakan monitor lain yang bekerja baik. Bila problem tetap terjadi pada monitor tersebut, gantilan board video adapter pada monitor yang rusak. Kita dapat membandingkan karakteristik sinyal antara monitor yang rusak dengan monitor yang baik lalu menarik kesimpulan, di mana letak masalahnya. Bila Anda tidak memiliki alat semacam osiloskop dan tidak terlalu ingin ribet, langsung saja ganti seluruh board video adapternya.

9. Gambar tampak tua dengan warna biru atau muncul warna kekuning-kuningan
Masalah : Sirkuit drive video jalur warna biru rusak.
Solusi : Sam seperti problem sebelumnya, Anda bisa menempuh cara yang sama untuk memeriksa sumber kerusakan. Sebelumnya, kita harus memastikan bahwa setting warna pada monitor berada pada posisi normal.

10. Gambar tampak tua kehijauan atau merah kebiruan (mendekati magenta)!
Masalah : Sirkuit drive video jalur warna hijau rusak.
Solusi : Sama seperti problem sebelumnya, anda bisa menempuh cara yang sama untuk memeriksa sumber kerusakan. Untuk ketiga masalah terakhir, bilamana sinyal videoyang diukur bekerja dengan baik tetapi tetap muncul masalah yang sama, curigai kerusakan pada CRT itu sendiri. Kemungkinan, katoda atau control grid-nya yang rusak. Bila Anda memiliki alat untuk mengetes CRT, periksa tabungnya apakah masih baik atau memang sudah soak. Bila hasilnya buruk, mau tidak mau Anda harus mengganti tabungnya.

11. Garis horizontal atau vertical muncul di tengah layer!
Masalah : Terjadi kerusakan pada sirkuit drive horizontal atau vertical.
Solusi : Untuk praktisnya, Anda harus mengganti board monitor utama. Bila Anda sedikit mau bersusah payah, Anda perlu untuk memeriksa sirkuit yang menghasilkan sapuan vertical pada board. Periksa apakah semua kabel terhubung dengan baik. Kadangkala, kerusakan ini disebabkan oleh kabel-kabel yang kendor akibat panas yang berlebihan di dalam system monitor.

12. Gambar hanya muncul di bagian atas atau bawh monitor!
Masalah : Kemungkinan besar, masalahnya ada pada amplifier vertical.
Solusi : Gunakan osiloskop untuk memeriksa amplifier ini. Bila tidak ad alat tersebut, ganti board utama monitor, lalu ketika gambar sudah tersimpan kembali, pastikan untuk memeriksa linearitas vertical monitor.

13. Tidak ada gambar maupun raster!
Masalah : Sambungan kabel monitor ke CPU tidak sempurna, video card tidak berfungsi benar, atau sirkuit dalam monitor rusak.
Solusi : Pastikan terlebih dahulu bahwa CPU dan video card bekerja baik. Setelah itu, periksa monitor yang rusak lalu cobalah menyalakan brightness dan contrast-nya. Mulailah dengan memeriksa sinyal sinkronisasi vertical dan horizontalnya. Bila tidak ada sinyal, tidak akan muncul raster. Bila sinyal ada, kemungkinan besar masalahnya ada pada sirkuit pengatur voltase tinggi atau drive horizontal. Jangan lupa selalu memeriksa power supply-nya. Ketiadaan atau lemahnya suplai listrik akan membuat sirkuit pengatur voltase tinggi atau drive horizontal tidak bekerja dengan baik. Jika salah satu output dari power supply bermasalah, kita dapat mengatasinya dengan memeriksa rangkaian power supply atau mengganti dengan power supply yang baru.

14. Karakter yang muncul di layer tidak sempurna!
Masalah : Monitor terganggu oleh keberadaan peranti lain yang memancarkan gelombang tertentu. Peranti lain itu misalnya radio, televisi, ponsel atau monitor lain yang memancarkan gelombang elektromagnetis atau menimbulkan medan magnet.

15. Tampilan yang muncul tampak bergelombang!
Masalah : Kemungkinan terbesar, sumbernya ada pada power supply.
Solusi : Gunakan multimeter untuk memeriksa output dari setiap suplai listrik ke semua komponen. Bila anda sudah menemukan suplai listrik yang bermasalah, perbaiki jalur suplai listrik ke tempat itu atau untuk praktisnya, ganti saja board power supply-nya secara keseluruhan.

16. Warna yang muncul berubah ketika monitor panas!
Masalah : Kemungkinan terbesar ada kerusakan pada sirkuit amplifier video.
Solusi : Seharusnya, monitor harus memunculkan warna yang sama baik dalam kondisi dingin maupun panas. Matikan monitor dan buka penutupnya, lalu mulai periksa kabel video, terutama kabel yang menghubungkan board raster dengan bagian dalam monitor. Bila koneksinya terlalu longgar, kendangkan. Juga periksalah sambungan antara board video amplifier dengan board raster.

17. Gambar makin menyempit kearah horizontal ketika monitor panas!
Masalah : Salah satu sirkuit pengatur sapuan horizontal lemah atau berubah nilainya ketika monitor panas.
Solusi : Matikan monitor, lalu periksa semua kapasitor yang berlokasi di sekeliling transistor output horizontal. Seringkali, problem semacam ini sangat sulit untuk dideteksi, karena mendeteksi kapasitor yang rusak sangat sulit dilakukan. Maka, mulailah dari memeriksa sambungan-sambungan solder di antara sirkuit dan kabel-kabel. Jika masalahnya tidak teratasi, yang perlu dilakukan adalah melakukan penyolderan ulang terhadap semua komponen pada transistor dan board raster.

18. Gambar melebar kea rah horizontal ketika monitor panas!
Masalah : Sama dengan gambar menyempit horizontal.
Solusi : Sama seperti problem gambar menyempit. Bilamana Anda tidak ingin memeriksa satu per satu komponen yang bermasalah, Anda bisa langsung mengganti board raster dengan yang baru.

19. Gambar detail pada resolusi grafis tinggi kabur!
Masalah : Kemungkinan besar, sirkuit amplifier videonya soak atau lemah. Gambar resolusi tinggi memerlukan bandwidth yang tinggi, sehingga ampligier video memerlukan variasi respon yang cepat antar-pixel. Bila amplifier video lemah, gambar pada resolusi tinggi akan sedikit kabur. Masalah ini akan hilang ketika monitor bekerja pada resolusi rendah.
Solusi : Periksa amplifier video yang menghasilkan sinar electron. Bila terjadi kerusakan, ganti atau perbaiki bagian tersebut saja. Solusi sementaranya, jangan setel monitor pada resolusi terlampau tinggi.

20. Gambar yang muncul patah-patah dan tidak stabil!
Masalah : Sirkuit pengatur voltase atau board raster bermasalah.
Solusi : Periksa seluruh sirkuit dan sambungan transistor pada board. Ingat bahwa sumber utama penghasil tiga warna utama yang memberikan sajian gambar ketika tidak bekerja secara sempurna ketika bermasalah. Solder ulang seluruh sambungan pada board amplifier video bilaman diperlukan.
Sumber: PCplus, 2007

SIASAT CEPAT JADI DOKTER PC

Huruf Alfabet Jumlahnya Hanya 26 Buah
Angka juga cuma ada 10 biji, dari 0 sampai 9. Tapi kombinasi di antara mereka mampu menghasilkan kosakata dan makna tak terhingga. Dari rerangkai kata itu, yang tertulis maupun lisan, kita bisa dibuat menangis, tertawa, tersenyum, sedih, atau gembira. Tanpa 36 buah huruf dan angka, penyair dan sastrawan tiada pernah punya senjata, misteri alam semesta tak pernah akan terbuka. Luar biasa!
Eh, ternyata ada yang lebih luar biasa. Data digital hanya terdiri atas kombinasi angka 0 dan 1. Tapi jangan ditanya bagaimana hasil perpaduan dua angka itu. Kata dan warna bisa dihasilkan, hanya dari dua angka itu. Dan para sastrawan bilang, satu titik warna bisa lebih berarti ketimbang ribuan kata-kata, sementara angka nol (0) dan satu (1) bisa melahirkan dua-duanya. Setiap manusia modern yang mengenal kehidupan digital tentu telah merasakan kekuatan dua angka itu.
Pun pula dengan PC, peranti digital yang sudah lama kita kenal. Komponen PC isinya ya hanya itu-itu doing. Power supply, prosesor, motherboard, chipset, monitor, kartu grafis, harddisk, floopy drive, keyboard, mouse, casing, floopy, drive CD/DVD, plus beberapa kartu tambahan. Jadi, ngobrol soal PC ya otomatis seperti hanya berputar-putar di sekitar barang-barang tersebut.
Kalau Anda merasa bosan atau sedikit muak, itu masih terbilang wajar. Apalagi, kadangkala pengetahuan atau kesempatan kita untuk mengikuti perkembangan setiap teknologi komponen PC juga sangat terbatas. Dan itu bisa membikin kita enggan bersinggungan dengannya lagi. Rasa-rasanya, mengikuti perkembangannya laksana menggantang asap.
Tapi tunggu dulu! Kita sudah tak mungkin lagi melepaskan diri dari perkembangan itu. Kehadiran PC sekarang ini sudah seperti air atau listrik saja. Tanpanya hidup menjadi tidak atau kurang berarti lagi. Betapa kalang kabutnya kita manakala PC kita rewel. Sama kalang kabutnya tatkala listrik di rumah kita mati atau keran air macet. Kehidupan serasa berhenti, dunia menjadi gelap.
Karenanya, tak mungkinlah kita membebaskan diri dari petualangan dan pencarian seputar dunia PC. Dan karena tak mungkin membebaskan diri lagi, tak mungkinlah kita tiada punya pengetahuan tentangnya. Dan pengetahuan tentang PC hanya akan datang dengan membaca tulisan tentangnya, menyentuhnya, mencobainya, merasakannya, dan senantiasa mengamati perubahan-perubahannya setiap saat peranti ini kita gunakan.
Yang juga patut kita perhatikan, sekalipun komponen PC ya hanya itu-itu saja, kombinasi masalah yang mungkin timbil bila PC yang kita gunakan rewel bisa seribu satu macam. Untuk itu, kita perlu mengurai setiap komponen itu, dan memahami bagaimana merawat dan memperlakukan dia sebaik-baiknya.
Untuk itu, mulai edisi ke-100 ini setiap bulannya PCplus akan menghadirkan warna baru dengan mengobok-obok setiap komponen ini, lengkap dengan cara mengatasinya bila timbul suatu masalah terhadap suatu komponen. Dengan menghadirkan ulasan berikut problem solving-nya, kita tidak lagi mencari seorang dokter PC, karena kita sendirilah yang akan menjadi dokter.

Casing : Sangkar Pelindung

Lazimnya, terdapat tiga tipe casing yang sekarang umum beredar yakni mini tower, middle tower, dan tower. Casing tipe desktop saat ini sudah jarang kita temukan di pasaran, meski juga tidak hilang sama sekali. Casing mini tower digunakan untuk mengandangkan motherboard tipe micro ATX, sedangkan middle tower dan tower dibuat mewadahi motherboard tipe ATX. Perbedaan keduanya terletak pada ukuran, jumlah bay (kolom 5¼ inci pada panel depan casing), dan (kadangkala) besarnya power supply.
Ada 4 komponen dalam casing yang patut diperhatikan yakni : penutup casing, power supply, jumlah bay, kerangka casing, sirkulasi udara dalam casing, dan tipe bracket pada bay.
Penutup Casing :
Untuk casing tower, ada dua tipe penutup yakni satu pelat berbentuk U atau dua buah pelat yang bisa dibuka di samping kiri dan kanan. Beberapa casing menambahkan kunci pengaman selain baut standar. Untuk casing berbentuk pelat U, ada yang bautnya dikaitkan dengan bagian depan rangka, ada pula yang dikaitkan dengan bagian belakang.
Power Supply :
Power Supply adalah sebuah kotak di dalam casing yang biasanya terletak di sudut kanan atas dari kerangka casing. Arus listrik dari luar dimasukkan ke dalam PC melewati kotak ini. Di bagian belakang power supply, kadangkala terdapat tombol on/off untuk memutuskan listrik dari luar tanpa perlu mencabut kabelnya. Keluaran listrik dari power supply ini adalah arus listrik berbentuk DC, yang disalurkan melalui berbagai tipe kabel. Sedikitnya, terdapat 3 jenis kabel keluaran dari power supply, yakni kabel power untuk motherboard, kabel power untuk floopy drive.
Konversi arus AC dari listrik luar ke DC melalui power supply biasanya akan menghasilkan panas yang cukup tinggi. Untuk itu, biasanya sebuah power supply dilengkapi dengan sebuah kipas untuk menghalau panas yang ditimbulkan. Kpasitas power supply ditentukan oleh daya yang mampu disediakan olehnya, diukur daam satuan watt (W).
Meski tampaknya sepele, power supply yang berkualitas jelek akan mengakibatkan berbagai macam gangguan, mulai dari system yang terkunci, kegagalan mendeteksi komponen, atau masalah pengaksesan disk, sampai yang terparah, komponen rusak atau terbakar. Bilamana system power supply kita rusak dan kita harus menggantinya, usahakan untuk mengganti power supply yang memiliki daya kurang lebih 50 watt di atas power supply yang hendak kita ganti. Saat ini, power supply yang banyak beredar di pasaran adalah 250-350 watt, dengan populasi terbanyak adalah 250 dan 300 watt. Semakin besar daya yang dihasilkan oleh power supply, semakin leluasalah kita menambahkan komponen.
Pada beberapa power supply khusus untuk Pentium-4, terdapat colokan tambahan khusus yang biasanya digunakan untuk memberikan daya tambahan bagi prosesor Pentium-4, sehingga prosesor bisa bekerja normal. Bentuknya adalah colokan bujur sangkar berukuran kurang lebih 1 cm, yang biasanya dihubungkan dengan lubang yang identik pada motherboard, yang umumnya berlokasi di dekat soket prosesor.

# Bay:
Bay berfungsi untuk menempatkan drive-drive atau panel-panel yang menghadap ke depan. Ada dua tipe bay yang umum pada panel depan casing, yakni bay berukuran 3½ inci dan 5¼ inci. Yang kecil pada umumnya digunakan untuk menempatkan floopy drive atau kadang-kadang zip drive, sedangkan yang besar digunakan untuk menempatkan drive CD/DVD-ROM, CD/DVD-RW, removable rack harddisk, kipas pendingin CPU, atau audio front panel. Casing mini tower biasanya memiliki satu buah bay 3½ inci dan dua bay 5¼ inci, sedangkan middle tower memiliki jumlah bay 3½ inci dua buah dan 5¼ inci antara tiga dan empat, sementara yang tower memiliki dua bay kecil dan lima atau lebih bay besar.

# Kerangka casing:
Kerangka casing adalah penyangga utama dari casing itu sendiri. Berbentuk kotak, ia merupakan pilar terdiri atas bay-bay 5 ¼ dan 3 ½ inci. Jumlah kolom 3 ½ inci biasanya sebanyak 3 atau 4 buah sedangkan kolom 5 ¼ incinya mengikuti jumlah bay yang tersedia. Power supply, panel depan, dan penutup casing dilekatkan ke kerang tersebut.

# Sirkulasi udara :
Sirkulasi udara yang dimaksudkan di sini adalah lalu lintas udara luar casing dan di dalam casing. System PC akan memproduksi udara panas dari prosesor, yang kemudian harus dibuang untuk menjaga kondisi system tetap stabil. Udara panas ini diusir dengan menggunakan heatsink fan (HSF), dan kemudian udara panas yang dihasilkan dihisap keluar dari casing dengan menggunakan kipas. Sirkulasi udara yang sempurna dan pengguna kipas yang bagus akan menghasilkan kestabilan system yang lebih tinggi, dan akan memberikan daya tahan yang lebih lama bagi PC tersebut.

# Bracket bay:
Bracket adalah pengunci drive atau komponen ke dalm bay. Ada dua model bracket yang selama ini ada di pasaran. Pertama adalah pengunci model baut, di mana komponen yang akan dipasang langsung disekrupkan ke dalam kolom casing. Model ini cocok untuk pengguna yang tidak suka atau jarang mengganti-ganti komponen drive atau membongkar pasang drive pada bay.
Model kedua adalah pengunci model rel. pada bracket tipe ini, drive yang akan dipasang dikaitkan dengan pelat panjang menyerupai rel, dan untuk membenamkannya ke dalam kolom casing, kita tinggal menaruhnya pada rel yang sesuai. Keuntungannya, bila kita ingin membongkar pasang komponen, kita tidak perlu lagi membongkar sekrup-sekrup dan cukup dengan melepaskan kabel-kabelnya, lalu mencabutnya keluar dari kolom casing.

Troubleshooting Casing

Power supply:
1. Kipas power supply tidak mau berputar!
Masalah : Terlalu banyak debu menyelimuti kipas, sehingga mengganggu putaran kipas. Listrik tidak cukup kuat untuk menggerakkan kotoran.
Solusi : Besihkan kipas dari debu yang menempel.

2. Power supply tidak memberikan daya listrik!
Masalah : Sekering putus atau ada komponen yang terbakar.
Solusi : Ganti sekering dengan sekering yang sesuai. Hati-hati melakukn penggantian, karena biasanya sekering dipasang mati, dan untuk melepasnya harus menggunakan solder.

3. Kabel power IDE kurang!
Masalah : Anda menggunakan terlalu banyak komponen, sehingga kabel yang disediakan oleh power supply kurang. Misalnya, Anda memasang dua harddisk, satu CD-ROM, satu DVD-RW, dan satu buah removable rack harddisk.
Solusi : Belilah sebuah kabel Y, yang berfungsi untuk menggandakan sebuah colokan kabel power. Biasanya, kabel Y yang tersedia adalah kabel untuk peripheral IDE.

Penutup Casing:
4. Penutup casing tidak bisa tertutup sempurna!
Masalah : ada kait pengunci yang bengkok atau penutupnya sendiri yang bengkok.
Solusi : Luruskan kait-kait atau pelat-pelat pengunci yang sudah bengkok. Jangan menutup casing secara paksa. Bengkok biasanya terjadi ketika penutup casing dipasang secara tidak sempurna atau dipaksakan pada kerangka casing.

5. Penutup casing nyetrum!
Masalah : Terdapat kebocoran arus listrik dari power supply.
Solusi : Gunakan kabel untuk menghubungkan bodi casing dengan ground (tanah atau dinding).
Problem Khusus:
6. Lampu indicator di panel depan tidak menyala!
Masalah : Lampu indicator mati atau salah memasang kabel indicator yang disambungkan ke motherboard.
Solusi : Periksa sambungan kabel indicator yang dihubungkan ke motherboard. Petunjuknya biasanya terdapat pada buku manual motherboard. Ada beberapa lampu indicator yang biasanya ada di panel depan, yakni lampu indicator power, lampu indicator IDE, dan lampu indicator floopy.

7. Suhu di dalam casing terlampau tinggi!
Masalah : Sirkulasi udara tidak baik, kipas-kipas tidak bekerja normal atau bahkan mati.
Solusi : Perbaiki sirkulasi udara. Bila terlampau rapat (lubang udara terlampau sedikit atau terlampau kecil), buat lubang baru dengan melubangi menggunakan bor. Bila memungkinkan, tambahkan kipas pendingin di dalamnya, atau letakkan kipas pendingin berbentuk drive yang bisa dipasang pada bay 5¼ inci.

8. Panel depan casing tidak terkunci sempurna!
Masalah : Pengunci panel tidak didesain dengan baik.
Solusi : Tambakan pengganjal pada kenop pengunci, dengan menggunakan kain atau lem. Bila panel berbentuk skrup, gunakan sekrup yang pas dan kunci rapat-rapat.

9. Tombol power susah dioperasikan!
Masalah : Konektor atau switch power pada panel depan tida terhubung ke switch di dalam kerangka casing.
Solusi : Kencangkan panel penutup depan casing sehingga terkunci sempurna. Bila diperlukan, anda bisa memanjangkan tombol switch power hingga switch bisa terhubung sempurna menambahkan kipas tambahan bisa membantu memperbaiki proses pendinginan di dalam casing. Ada banyak pilihan yang ditawarkan, mulai yang berukuran kecil sampai yang berukuran besar.. sumber daya listrik kipas tambahan ini biasanya disediakan oleh motherboard, sehingga kita tidak perlu repot-repot mencari jalur sumber listrik. Pastikan cara pemasangan tepat, sehingga kipas bisa benar-benar memberikan manfaat. Bila salah, system tidak tambah dingin tapi kian berisik.
Tombol power yang tidak berfungsi dengan benar, biasanya disebabkan oleh posisi yang tidak tepat atau pegas tombol yang sudah lemah/aus. Tombol ini adalah alat mekanis biasa, dan kita bisa memperbaikinya dengan cara meluruskan switch pada panel casing atau mengganti pegas yang sudah aus.

10. Tombol power tidak bisa kembali ke posisi semula!
Masalah : Pegas switch power sudah lemah atau tidak duduk sempurna.
Solusi : Ganti dengan yang baru, atau pegas sedikit diregangkan. Bila tombol tidak duduk secara sempurna, periksa semua dudukan dan posisikan secara pas.
Sumber: PCplus, 2007

PEMERIKSAAN UMUM SAAT PC BERMASALAH

Ketakutan PC akan makin bermasalah atau minimnya pengetahuan makin membuat PC sakit parah. Kalau sudah demikian, jurus paling sakti pun dikeluarkan, yakni membawanya ke dokter PC alias tukang servis.
Padahal, kita bisa melakukan “pemeriksaan oemoem” sebelum membawanya ke dokter spesialis, di mana kita perlu keluar ongkos. Untuk menjadi dokter umum PC, beberapa sumber penyakit yang umum menghinggapi PC perlu kita kenali terlebih dahulu. Sekarang, mari kita telusuri kemungkinan-kemungkinan yang paling sering menimbulkan masalah pada PC.

Virus, Jahanam Paling Ditakuti
Beberapa masalah yang sering muncul akibat serangan virus antara lain :
1. Harddisk menunjukkan tanda-tanda bekerja tetapi system menginformasikan adanya kekurangan space tanpa alasan yang jelas
Masalah: beberapa virus membuat salinan file tertentu pada harddisk, misalnya saja file berekstensi .EXE dan .COM sampai beberapa kali. Penambahan file ini seringkali sampai membuat harddisk penuh sesak. Bila tidak terdeteksi atau tidak terkontrol, pembiakan ini akan terus berlangsung sampai harddisk penuh oleh jahanam satu ini dan system menjadi hang sama sekali.

2. Beberapa program file berekstensi .EXE dan .COM membesar ukurannya tanpa sebab-sebab yang jelas
Masalah: Problem semacam ini menandakan virus sedang bekerja. Dalam keadaan sehat, file-file COM dan EXE seantiasa berukuran tetap. Viruslah yang membuatnya berubah. Sebagian besar virus bekerja dengan membunuh atau mengubah file-file tersebut, sehingga tubuh PC kehilangan organ-organ terpenting untuk menjalankan aplikasi.

3. Harddisk bekerja meski computer dalam keadaan idle atau anda sedang ta mengunakannya
Masalah: Tanda bahwa harddisk bekerja atau tidak biasanya terlihat dari lampu indicator LED (light emitting diode) yang ada pada panel bagian depan (front panel) casing. Lampu indicator akan menyala atau berkedip-kedip ketika program/aplikasi sedang bekerja atau data sedang diproses. Bila tanpa ada beban pekerjaan yang harus diolah tetapi lampu indicator berkedip, ada kemungkinan virus tengah membiakkan diri di harddisk Anda.

4. Performa system menjadi lebih lambat tanpa sebab yang jelas
Masalah: Performa system PC memang bisa melambatkan bila suatu program berat seperti aplikasi grafis, pengolah audio-video, tengah dijalankan. Namun, bisa juga performa PC melambat karena ia bekerja terlampau berat akibat file-file di dalam harddisk berantakan penataannya. Akan tetapi, bilamana PC melambat sekonyong-konyong sementara Anda hanya menggunakannya untuk keperluan yang biasa-biasa saja, curigai bahwa virus telah bersarang di computer Anda.

5. File-file menjadi tergerogoti atau hilang sama sekali tanpa sebab yang jelas atau program tidak bisa diakses secara benar
Masalah: Bila Anda membuang file, prosedurnya tentu jelas dan di tempat sampah (recycle bin) pasti terdapat file yang telah Anda buang. Apabila suatu program Anda jalankan, seharusnya ia bekerja normal. Bilamana anda membuang suatu program, prosedurnya jelas, yakni melalui proses uninstall yang benar. Namun, virus bisa saja mengacak-acak file eksekusi program (file berekstensi .EXE) sehingga ketika diakses, ia malah bersembunyi atau mengirim pesan yang membuat Anda bingung. Patut diduga bahwa viruslah yang membuat file atau program Anda tergerogoti.

6. Sistem PC mengalami hang tanpa sebab yang jelas
Masalah : Jangan ragu-ragu lagi. Sekalipun peranti hardware seperti meori atau motherboard bias membuat system menjadi hang, namun bila Anda tidak mengutak-atik hardware dan system tetap hang, virus pantas Anda jadikan terdakwa penyebab malapetaka ini.

7. Sistem memori kacau tanpa sebab yang jelas
Masalah : Ada beberapa virus yang menyerang system memori dan mengganggu pekerjaannya. Bila Anda mengalami gejala semacam ini sementara Anda tidak mengutak-atik hardware satu pun, dapat dipastikan pula bahwa viruslah yang jadi penyebabnya.
Solusi : Tidak ada kata lain, gunakan antivirus buat membasmi penyakit yang satu ini. Pastikan bahwa prosedurnya benar dan antivirus yang anda gunakan cukup ampuh buat membuatnya tak berkutik lagi, entah dengan membunuhnya atau mengarantina si jahanam pengganggu ini. Salah satu kunci untuk mengatasi masalah tersebut adalah meng-update antivirus yang sudah terpasang, sehingga ia punya kemampuan membasmi virus-virus baru.
Sebaiknya, Anda cukup memasang satu antivirus saja di computer. Bilamana antivirus tersebut tidak mampu menangani virus yang bersarang di tubuh PC Anda, cobalah cari antivirus spesifik yang dirancang khusus untuk membasmi virus tersebut. Kelemahannya, antivirus ini hanya bias membasmi satu jenis virus. Keuntungannya, programnya tidak berukuran besar dan sangat mudah dijalankan. Salah satu cara untuk mencari obat pembasmi virus spesifik ini adalah memanfaatkan mesin pencari dan memasukkan kata kunci yang tepat pada kolom pencarian.

Troubleshooting Listrik dan Komponen

8. Lampu power tidak menyala tetapi kipas power supply tidak bekerja
Masalah : Kecurigaan pertama tentu harus dialamatkan pada sumber listrik itu sendiri. Kadangkala, listrik yang bervoltase terlalu rendah juga membuat PC diam seribu bahasa ketika diberikan daya padanya.
Solusi : Pastikan bahwa tersedia suplai listrik dan jala-jala listrik. Gunakan multimeter atau test pen untuk menguji ketersediaan suplai listrik di tempat colokan. Sementara, tegangan yang terlampau rendah hanya bias diatasi dengan memasang UPS atau stabilizer. Bila listrik normal, periksa seluruh jalur kabel yang menghubungkan power supply pada PC ke jala listrik. Untuk amannya, bila PC Anda ada di rumah, nyalakan computer pada waktu siang hari ketika voltase jaringan listrik belum berada pada puncak. Beban puncak listrik menyebabkan voltase turun, dan ini biasanya terjadi pada waktu sore atau malam hari. Untuk memeriksa power supply lewat cara praktis, Anda bias menghubungpendekkan jalur kabel pada power supply lewat lubang di ujung kabel menggunakan kawat pendek. Atau, Anda juga bias menggunakan multimeter.

9. Lampu power tidak menyala, kipas pendingin power supply berputar tetapi system tidak mau hidup
Masalah : Ada dua kemungkinan penyebabnya. Pertama suplai tegangan listrik dari rumah Anda terlampau rendah, atau kemungkinan kedua, terjadi kerusakan pada output power supply yang ada di CPU Anda.
Solusi : Pastikan terlebih dahulu bahwa suplai tegangan cukup. Tegangan yang terlalu kecil akan membuat power supply tidak dapat berfungsi normal. Gunakan voltmeter untuk mengukur tegangan output yang keluar dari power supply. Biasanya, tegangan output dari kabel power supply berukuran +5 volt. Bila sinyal voltase tidak terdeteksi atau terlampau lemah, kemungkinan kerusakan ada pada power supply. Ganti power supply di CPU Anda.

10. Lampu power menyala tetapi tidak ada aktivitas system yang terdeteksi
Masalah : Kemungkinan terbesar output voltase yang disediakan power supply ke motherboard dan komponen lainnya terlampau rendah. Sinyal voltase DC harus terdeteksi pada setiap kabel yang terhubung pada komponen seperti motherboard, harddisk, floopy, dan peranti lainnya. Kemungkinan lainnya, terdapat hubungan pendek (short) pada salah satu atau beberapa komponen.
Solusi : Periksa terlebih dahulu output voltase. Bila ini beres, lakukan pemeriksaan pada heatsink fan dan prosesor pada soketnya. Pastikan bahwa heatsink fan sudah tercolok ke salah satu sumber daya listrik dari motherboard. Pastikan pula bahwa prosesor sudah duduk dengan tepat dan terkunci rapat. Setelah itu, Anda perlu memeriksa semua card-card yang tertancap dan semua komponen yang terhubung dengan kabel power supply. Bila terdapat card yang tidak tertancap dengan sempurna, posisi semacam ini bias membuat hubungan pendek dan membuat system tidak menyala. Pastikan pula bahwa pada motherboard tidak terdapat gangguan yang membuat sirkuitnya terganggu. Sekrup, kabel, atau kotoran lain yang melekat pada motherboard bisa menyebabkan terjadinya hubungan pendek. Sekrup-sekrup pengunci yang menghubungkan motherboard dengan casing juga bisa menyebabkan hubungan pendek sehingga computer pingsan tak mau bekerja. Gunakan plastic pelindung, atau bahan lain yang bersifat isolator untuk menghindari hubungan pendek ini. Bila tetap tidak menyala, cobalah merangkai komponen di luar casing dan jalankan system di luar casing.

11. Lampu power menyala, tetapi terdengar dua kali atau lebih bunyi beep
Masalah : Tidak ada sinyal video di dalam PC Anda.
Solusi : Periksa terlebih dahulu video card Anda. Masalah satu ini bisa menyebabkan system menjadi hang dan menghentikan proses loading ke system operasi. Pastikan bahwa video card Anda bekerja dengan baik dan tertancap dengan benar. Bunyi beep adalah sinyak yang dikirimkan oleh PC tatkala melewati proses POST (Power On Self Test). Karakteristik bunyi beep pada proses ini berbeda antara system PC yang satu dengan yang lain, tergantung dari tipe BIOS yang digunakan.

12. Lampu power meyala, tapi muncul bunyi beep terus-menerus
Masalah : Tidak ada system memori di dalam PC.
Solusi : Periksa apakah memori Anda bekerja dengan baik dan tertancap secara benar. Tidak ada sebab lain kecuali bersumber dari komponen memori ini. Namun, belakangan ada beberapa motherboard yang tidak memunculkan bunyi beep ini, sehingga kita harus memeriksanya lebih teliti melalui tampilan yang ada di layar. Periksa munculnya tampilan pembacaan memori di layar monitor sesaat setelah PC kita nyalakan.

13. Lampu power menyala, komponen IDE yang terpasang tidak terdeteksi pada saat setelah PC selesai melakukan POST
Masalah : Kemungkinan kabel atau listrik yang menyuplai peripheral IDE seperti harddisk dan CD/DVD drive bermasalah. Kemungkinan masalah yang lain, periferalnya sendiri yang bermasalah.
Solusi : Periksa suplai listrik dan kabel yang terhubung ke peripheral. Sebelumnya pastikan terlebih dahulu bahwa setting BIOS pada PC sudah diatur. Bila kesulitan mengatur setting BIOS, buatlah setting BIOS untuk mengaturan ini bersifat auto detect dan masukkan setting pada posisi default. Periksa apakah kabel yang terhubung ke peripheral sudah terpasang dengan tepat. Bila tetap tidak terdeteksi, masalah kemungkinan terletak pada harddisk atau CD/DVD drive yang terpasang. Troubleshooting komponen-komponen ini tidak akan dibahas pada tulisan ini.

14. Sistem power bekerja normal dan POST berjalan baik, tapi tidak muncul tampilan apapun di layar monitor
Masalah : Ada dua kemungkinan, apakah dari monitornya sendiri atau dari video card pada CPU.
Solusi : Periksa terlebih dahulu monitornya. Bila masih berfungsi baik, alihkan perhatian Anda pada video card. Kemungkinan, bila proses ini terjadi, video card Anda mengalami gangguan atau rusak sama sekali. Ganti video card Anda.

15. Sistem power menyala, POST bekerja tapi bermasalah ketika system hendak masuk ke Windows
Masalah : Ada kemungkinan masalahnya terletak pada system operasinya sendiri, entah mengalami crash atau mengalami perubahan setting. Kemungkinan lainnya, sumber masalah berasal dari aplikasi software yang sudah terpasang di dalam harddisk.
Solusi : Cek ulang apakah system operasi sudah terinstal dengan sempurna atau belum dan bilamana tidak ada pemecahan, lakukan pemformatan ulang harddisk penginstalan ulang system operasi.

16. Sistem bekerja normal, tetapi Windows selalu masuk pada setting Safe Mode
Masalah : Terjadi konflik driver, IRQ, atau resources lainnya pada PC. Kemungkinan masalah yang lain, ada aplikasi software yang saling bertubrukan.
Solusi : Lepaskan semua card tambahan yang tidak digunakan kecuali menyalakan system PC. Buang semua driver yang tidak diperlukan, lalu setelah semua driver dibuang dibersihkan, restart PC Anda. Curigai aplikasi software-nya bila semua cara sudah Anda tempuh tetapi masalah tetap muncul.

17. Setelah POST berlangsung, system menginformasikan adanya error pada hardware
Masalah : Kabep CPU fan terpasang pada tempat yang salah. Meskipun CPU fan menunjukkan tanda berputar, beberapa motherboard mesyaratkan kabel CPU fan terpasang pada tempat yang benar. Pada motherboard, terdapat beberapa tempat untuk memberi daya listrik pada CPU fan yang bentuknya sama. Tetapi bila kita amati lebih teliti pada board, ada tulisan yang menandakan, bahwa colokan tersebut berlabel CPU fan atau Power fan. Kabel CPU fan harus terhubung ke colokan CPU fan, bukan Power fan.
Solusi : Periksa buku manual dan amati tulisan pada motherboard. Pastikan bahwa kabel tercolok dengan benar pada CPU fan dan bukan pada Power fan.

18. Setelah POST berjalan, keyboard atau mouse tidak terdeteksi dan system berhenti berproses
Masalah : Kemungkinan, keyboard atau mouse tidak terpasang dengan benar. Bila keyboard tidak terpasang dengan benar atau keyboard mengalami kerusakan, setelah POST berlangsung, biasanya di layar monitor akan muncul peringatan “No keyboard present” lalu system menjadi hang atau berhenti. Bila mouse tidak terdeteksi, system akan masuk ke Windows, tetapi sebelumnya akan muncul peringatan berupa kotak dialog bahwa tidak ada mouse pada system Anda.
Solusi : Periksa kabel keyboard yang menancap pada bagian I/O di belakang casing. Periksa apakah kaki-kaki pada kabel masih lengkap atau ada yang patah. Bila memungkinkan, periksa keyboard menggunakan PC lainnya yang berfungsi normal. Lakukan prosedur yang sama untuk memeriksa mouse. Bila mouse atau keyboard tidak mengalami kerusakan, kemungkinan yang lain adalah salah satu atau kedua controller pada keyboard dan mose mengalami kerusakan. Bila kerusakan ini yang terjadi, mau tidak mau Anda harus mengakalinya, misalnya dengan menggunakan keyboard atau mouse bertipe USB.

19. Sistem PC terasa lambat dalam mengeksekusi data
Masalah : Salah satu perbedaan antara motherboard baru dengan motherboard lama adalah pada kabel yang difungsikan sebagai lalu lintas data. Pada motherboard lama, kabel IDE 1 untuk harddisk dan kabel IDE 2 untuk CD-ROM bentuk dan jenisnya sama, sehingga bisa saling dipertukarkan. Beberapa PC bahkan menggunakan satu kabel untuk dua jenis peripheral ini. Pada motherboard baru, kabel harddisk yang disertakan sudah mengikuti kemampuan harddisk terbaru yang mendukung Ultra ATA-66 ataupun ATA-100, sehingga kabel harddisk hanya ditujukan untuk menghubungkan harddisk ke motherboard, bukan untuk menyambungkan CD-ROM ke motherboard. Apabila kabel ini digabung, maka kemampuan transfer data akan mengikuti kecepatan terendah yang dibaca.
Solusi : Periksa jalur kabel IDE 1 dan IDE 2 sesuai dengan buku manual dan pastikan bahwa system perkabelannya sudah terpasang dengan benar.

20. Lampu-lampu pada front panel casing tidak menyala sebagaimana mestinya
Masalah : Lampu IDE LED menyala terus atau tidak menyala sama sekali. Demikian juga dengan lampu power LED. Bila masalah ini muncul, kemungkinan terbesar masalahnya terletak pada kesalahan posisi kabel-kabel front panel casing yang terhubung ke motherboard.
Solusi : Periksa kabel yang terpasang sesuai dengan buku manual yang disertakan pada motherboard. Bila lampu IDE LED terus menyala, kemungkinan pemasangan kabelnya terbalik. Demikian pula untuk lampu-lampu indicator yang lain. Salah satu cara yang paling gampang untuk memasang kabel ini adalah memanfaatkan warna-warna kabel yang ada pada front panel casing. Biasa-nya, kabel berwarna-warni (hijau, merah, oranye, biru, dan sebagainya, tergantung dari merek casing) adalah kabel yang terhubung dengan listrik positif, sedangkan kabel berwarna hitam atau putih terhubung ke ground atau ke posisi negatif.
Sumber: Tabloid PCplus, 2007

JURUS JITU DETEKSI KINERJA PC

Tak semua prosedur pemeriksaan masalah pada PC berlaku sama untuk semua komponen. Masing-masing komponen harus diladeni dengan jurus yang spesifik. Strateginya adalah, tetaplah mencari cara terbaik untuk menekan biaya dan hindari jurus buang-buang waktu sebagaimana suatu kesebelasan sepakbola sudah menang tipis di tengah pertandingan. Ditambah dengan taktik trial and error yang tepat, ilmu reparasi PC pasti bakal Anda kuasai. Tapi, sebelumnya pahami dulu dilosofi dan seni mendeteksinya.

Selalu Berubah Setiap Waktu
Teknologi terus berkembang, masalah nan kompleks pun senantiasa kian membayang. Suatu komponen selalu mengalami perubahan, baik ketika dipakai maupun dibiarkan diam sekalipun. Tiada yang tak berubah oleh waktu.
Setiap komponen PC memiliki daya tahan tertentu yang dipengaruhi oleh factor-faktor antara lain penggunaan, suhu lingkungan, ataupun cara penyimpanan. Itulah sebabnya, pada umumnya sebagian komponen PC yang dibuat oleh beragam produsen memiliki patokan atau standar yang disebut MTBF (Mean Time Between Failure).
MTBF adalah ukuran daya tahan suatu komponen sampai dengan rusaknya barang tersebut. Artinya, misalnya suatu komponen memiliki MTBF 10.000 jam, maka setelah masa 10.000 jam masa pakai dilewati, barang tersebut diperkirakan akan mengalami kerusakan. Lantaran penghitungan waktunya bersifat Mean Time, maka waktu tersebut adalah waktu rata-rata. Artinya lagi, tidak setiap komponen akan selalu rusak setelah melewati batas waktu pakai yang telah ditentukan oleh si pembuat. Lebih jauh lagi, meskipun telah melewati batas MTBF, sesungguhnya barang tersebut masih tetap bisa dipakai, namun bilamana terjadi kerusakan, kerusakan yang terjadi lebih disebabkan karena barang tersebut sudah waktunya rusak dan bukan rusak lantaran salah pengoperasian. Pada umumnya, setiap komponen PC berbeda-beda angka MTBF-nya.
Yang juga tak kalah penting, perubahan teknologi setiap komponen juga berlangsung sangat cepat. Hal ini menjadi problem ketika kita harus mengganti suatu komponen yang rusak, sementara komponen itu sudah tidak tersedia di pasaran lantaran tergusur oleh teknologi yang lebih baru.
Motherboard, prosesor, memori/RAM, harddisk adalah beberapa komponen yang sangat cepat pergantian atau perkembangannya. Meski kadang kala perubahan hanya terletak pada kapasitasnya, buat para pengguna awam, menentukan mana yang cocok yang masih ada di pasaran boleh jadi terlihat lebih rumit. Soal kompatibilitas biasanya selalu menyisakan pertanyaan di kalangan ini.
Sementara itu, CD-ROM, meskipun secara teknologi tidak berubah, perubahan kecepatan putarnya sering kali juga setiap komponen PC. Untungnya, semakin hari, tingkat kompatibilitas setiap komponen dengan system sebelumnya juga kian besar. Kalau dulu plug and play (tancapkan dan jalankan) sering diplesetkan menjadi plug and play (tancapkan dan berdoalah), kini factor itu makin berkurang. Apalagi bila kita memasang system operasi yang terbaru dari Microsoft, Windows XP.

Benchmark: Simulasi Pengujian Kinerja Sistem
Sampai saat ini, benchmarking dianggap merupakan alat ukur yang paling valid dan obyektif di dunia computer untuk menguji kinerja sebuah PC. Akan tetapi, harus ditegaskan di sini bahwa benchmarking sendiri bukanlah tolok ukur yang paling pas untuk menguji tingkat kestabilan sebuah PC sangat ditentukan oleh banyak factor, antara lain pemilihan komponen, kualitas komponen yang digunakan, kombinasi antar-komponen, software yang dipasang/diinstal, serta cara pemakaian sehari-hari dan perawatannya.
Oleh karena itu, kestabilan sering kali dikaitkan dengan waktu pemakaian yang berlangsung dalam jangka waktu yang lama. Dan sampai saat ini, belum ada sebuah aplikasi untuk mengukur kestabilan bila ditinjau dari perspektif ini. Salah satu cara yang ditempuh para penguji system atau komponen PC guna mengatasi kelangkaan aplikasi ini adalah menjalankan software benchmarking yang sudah lazim tersedia dalam kurun waktu berhari-hari atau berminggu-minggu (umumnya seminggu non-stop). Istilah teknisnya disebut looping. Jadi, system dipaksa secara simulatif untuk bekerja berulang-ulang dalam jangka waktu yang lama.
Benchmarking sendiri pada prinsipnya adalah pengukuran dengan tujuan tertentu. Beberapa tujuan itu antara lain :
1. Perbandingan kinerja system
Benchmarking semacam ini merupakan pengujian untuk mengukur tingkat kemampuan beragam merek harddisk ini bisa diketahui performanya masing-masing. Syaratnya, spesifikasi teknis dan kondisi pengujianny sama.
Suatu system dibandingkan dengan system lain yang memiliki spesifikasi teknis yang sama atau mirip. Benchmarking semacam ini biasanya merupakan bertujuan untuk menjadi ajang kompetisi antara suatu komponen atau system berdasarkan suatu tolok ukur tertentu (kecepatan, kemampuan mengeksekusi perintah, kecepatan memunculkan gambar, dan sebagainya). Yang perlu diperhatikan dalam pengujin system PC utuh semacam ini, aplikasi yang digunakan untuk mem-benchmarking PC desktop dengan notebook berbeda dan tidak bisa dipertukarkan satu sam lain untuk keperluan pengujian.

2. Mengukur peningkatan system yang di-upgrade
Benchmarking semacam ini dilakukan untuk mengukur seberapa jauh tingkat perubahan atau perbaikan kinerja dari suatu system, sebelum dan setelah dilakukan upgrading tertentu pada salah satu atau beberapa komponen. Misalnya, Anda menggunakan system PC lama berprosesor Intel Pentium-III 500MHz lalu And ingin mengukur seberapa besar peningkatan kinerjanya setelah prosesor diganti dengan yang Intel Pentium-III 1GHz. Atau, anda ingin mengukur peningkatan kinerja setelah ditambahkan RAM tertentu, atau Anda ingin mengukur peningkatan kinerja setelah melakukan overclocking terhadap prosesor, RAM, atau VGA card yang sama.

3. Mendiagnosis suatu system
Benchmarking kadangkala juga bisa berperan sebagai pendiagnosis system. System yang performanya terlihat buruk dapat di-benchmark, diperiksa, dan kemudian dikonfigurasi ulang.
Benchmarking semacam ini akan membantu kita untuk memilah-milah persoalan yang muncul dan memperbaiki masalahnya secara tepat.

4. Perbandingan performa komponen
Beberapa komponen optical drive (CD-ROM, DVD-ROM, CD-RW, DVD+RW, DVD-RW, dan sebangsanya) bisa diuji secara terpisah pada kondisi system yang sama. Biasanya, yang diukur adalah kecepatan transfer data dan seek time di optical drive tersebut. Untuk peranti tulis (writer), selain dua aspek tersebut yang diuji biasanya adalah kecepatan tulis ulang (rewrite). Untuk VGA card, beberapa kemampuan yang diukur antara lain kemampuannya menghasilkan tekstur (dalam frame rate), menjalankan aplikasi 3 dimensi (3D), atau stabilitas (biasanya system dijalankan secara looping sekurang-kurangnya 16 jam). Komponen lainnya yang bisa diuji antara lain sound card, speaker harddisk, dan monitor.
Namun, teknik melakukan benchmarking sendiri bisa menimbulkan masalah buat yang awam PC. Bagaimana cara melakukannya? Alat apa saja yang diperlukan untuk melakukan benchmarking?
Benchmarking pada pokoknya adalah pengukuran obyektif. Untuk mencapai obyektivitas itu, suatu alat atau mekanisme dibuat, supaya hasil yang hendak diuji bisa diukur secara valid. Data hasil benchmarking biasanya berupa angka dengan satuan-satuan tertentu, tergantung apa focus benchmarking itu sendiri. Ada yang dihitung berdasarkan waktu (detik), ada yang berdasarkan tampilan gambar per detik (frame per second), ada yang berdasarkan instruksi per detik (instruction per second), dan sebagainya.
SYSmark 2001 misalnya, merupakan software benchmarking yang sangat popular untuk menguji system desktop atau notebook secara keseluruhan. SYSmark 2001 mampu menjalankan 14 aplikasi yang berbeda-beda, yang dibagi dalam dua beban kerja yang berbeda yakni Internet content creation dan office productivity. SYSmark 2001 ini memiliki kemampuan untuk mensimulasikan suatu aplikasi multitasking (menjalankan perintah secara dalam waktu bersamaan) aplikasi-aplikasi yang umum terpasang pada PC. Semakin besar angka SYSmark yang bisa diraih, semakin hebatlah performa PC tersebut.
Sementara Premiere 6.0 merupakan aplikasi untuk mengukur performa prosesor, memori, dan harddisk ketika system PC dijalankan untuk menjalankan dan mengolah data-data video digital. Proses pengujian akan melewati beberapa tolok ukur seperti transisi 3D, koreksi warna, pengeditan suara, di mana aplikasi simulasi video tersebut dikemas dalam sebuah file video digital berukuran 306MB. Pengukuran simulasi video ini menggunakan satuan detik, di mana semakin singkat waktu yang digunakan, semakin bertenagalah system PC tersebut.
Untuk menguji kinerja grafis dan performa dalam menjalankan gaming, biasanya digunakan Quake III Demo atau 3D Mark 2001, yang pengukurannya dicatat dalam frame per second. Semakin besar angka yang dihasilkan, semakin baguslah performanya. Dalam pengujian stabilitas suatu hardware, aplikasi 3D Mark 2001 inilah yang umumnya dijalankan dalam mode looping selama 16 jam penuh tanpa henti.
Pengukuran-pengukuran tersebut, sekali lagi, biasanya menggunakan suatu aplikasi yang bersifat simulasi, supaya kita memiliki gambaran, seberapa besar kemampuan suatu system ketika dijalankan pada kondisi nyata. Oleh karenanya, kebanyakan benchmarking dilakukan dengan bantuan software yang memang dikhususkan untuk menguji suatu kondisi tertentu. Untuk mencapai kondisi simulasi yang diinginkan, biasanya ada beberapa hal yang harus diperhatikan antara lain :
# Catat semua konfigurasi system yang akan diuji secara lengkap. Pencatatan menyeluruh ini meliputi jenis dan tipe prosesor, RAM, motherboard, system operasi yang digunakan, kapasitas harddisk, add-on card, dan sebagainya.
# Jalankan versi software benchmark yang sama pada system. Bagaimanapun juga, benchmarking merupakan pendekatan dari sisi software. Oleh karenanya, versi benchmark yang berbeda akan memberikan dua hasil yang berbeda pula. Bahkan, sebuah alat benchmarking pada satu versi yang sama pun hampir selalu memberikan hasil yang berbeda-beda setiap kali benchmarking dijalankan. Oleh karenanya, benchmarking pada dua system yang akan diuji harus menggunakan software yang sama dan versi yang sama pula.
# Lakukan benchmarking lebih dari satu kali dan ambil nilai rata-ratanya. Lantaran setiap benchmarking memberikan hasil yang berbeda, sudah barang tentu kita perlu melakukan pengukuran lebih dari satu kali. Biasanya sebanyaka tiga kali, lalu diambil reratanya.
# Hindari perbedaan platform hardware yang berbeda-beda. Untuk mencapai kondisi obyektif, pengujian seharusnya menggunakan platform hardware yang sama. Misalnya anda ingin menguji harddisk A dan B. Jangan menggunakan hardware pendukung yang berbeda (misalnya motherboard, prosesor, RAM) karena bisa dipastikan hasilnya akan berbeda. Sekalipun mekanisme kerja system PC pada umumnya sama, perbedaan yang kecil sekalipun (BIOS versi yang berbeda misalnya) bisa menghasilkan data hasil benchmark yang berbeda. Misalnya dua merek motherboard yang menggunakan chipset sama, keduanya tetap memiliki beberapa perbedaan seperti versi BIOS, arsitektur motherboard, kualitas komponen, dan sebagainya.
# Jalankan benchmark pada beban tugas yang sama. Hasil yang dimunculkan oleh aplikasi benchmark tidak menjamin bahwa bila system tersebut dijalankan pada kenyataan yang sesungguhnya akan memberikan hasil yang sama. Sekali lagi, benchmarking adalah perkara simulasi. Oleh karenanya, bila kita ingin mengukur kemampuan suatu system PC, kita harus mencari software yang mampu mensimulasikan program atau aplikasi yang sesungguhnya.
# Gunakan versi BIOS yang sama versinya dan gunakan driver yang paling baru. Keterbaruan BIOS dan driver akan memberikan hasil yang lebih optimal pada sebagian besar pengujian.

Membaca Hasil Benchmarking
Meskipun sudah di-setting pada kondisi yang seobyektif mungkin, semirip mungkin, hasil yang keluar dalam sebuah pengujian pada umumnya berbeda dari satu pengujian ke pengujian berikutnya. Akan tetapi, perbedaan ini biasanya tidak terlampau besar. Oleh karena itu, hasil akhir sebuah pengukuran kuantitatif semacam ini biasanya merupakan rerata dari beberapa kali pengujian (umumnya 3 kali).
Secara obyektif, ada banyak criteria yang digunakan untuk menilai kualitas komponen PC. Bilamana yang diukur adalah satuan waktu, pada umumnya makin cepat makin baik. Bila yang diukur adalah produktivitas, angka yang semakin besar menunjukkan hasil yang lebih bagus.
Namun, benchmarking sendiri menyimpan beberapa pertanyaan dilematis. Pertama, apakah benchmarking merupakan satu-satunya tolok ukur untuk dijadikan patokan dalam memilih komponen, sementara aplikasi pengujiannya sendiri bersifat simulatif? Simulasi, seberapapun sempurnanya tetap menyimpan beberapa kelemahan dan tidak bisa menunjukkan 100 persen kondisi riil ketuka sebuah PC digunakan untuk bekerja. Kedua, seberapa besar kondisi toleransi perubahan lingkungan pengujian masih bisa diterima pada sebuah pengujian? Seberapa besar pengaruh perubahan lingkungan (waktu pengujian, temperature, dan sebagainya) memberi dampak pada hasil pengujian? Ketiga, benchmarking merupakan pengukuran kuantitatif, sementara factor kualitatif, sementara factor kualitatif dianggap tidak valid. Sementara, pada kondisi riil, factor kualitatif ini banyak sekali, baik yang berasal dari komponen itu sendiri maupun dari sisi pengguna yang mengoperasikannya.
Nah, lantaran kita tidak bisa menghindar dari jebakan dilematis tersebut, benchmarking tetap hanyalah merupakan salah satu cara menguji kinerja PC, yang untungnya sudah diterima secara luas di kalangan pengguna computer. Cara lain yang lebih valid, tentulah seperti filosofi orang yang tengah belajar berenang atau naik sepeda. Tak pernah seseorang bisa dianggap bisa berenang atau bersepeda, kecuali ia sudah merasakan dinginnya air atau mengayuh tuas pedal sepeda secara riil, lalu merasakan kenikmatan ketika berproses di dalamnya. Jadi, melalui penggunaan sehari-harilah sebuah PC bisa dirasakan kinerjanya.
Dalam konteks demikian, PCplus menyarankan Anda belajar sendiri menyimpulkan kualitas suatu produk setelah membaca hasil benchmarking, lantaran kami tidak mau dianggap menggurui atau memaksakan kehendak. Data hasil ujinya kami sodorkan, keputusannya tetap di tangan Anda, karena Anda jugalah yang mengambil keputusan untuk membeli atau tidak.
Sumber: Tabloid PCplus, 2007